‘rtUw P YA
TPhilsssgey ¢ Lek

“Thes

‘(\\,@%

deoLn. | Dover
4 Mooy 2004 #§

Numbering the Continuum

NOTICE
This mzierial may be
protected by copyright
law (Title 17 U.S. Code.}

There are two senses in which the continuum can be said to have
been numbered. (1) The (linear) continuum has been replaced by,
or is even in some circumstances identified with, a set of numbers —
the real numbers. (2) The continuum has been assigned a cardinal
number 2%, i.e. sense has been given to the question ‘How many
points are there in a line? and a partial answer given. In the light of
what was said in chapter 3 it is clear that (2) could not have come
about without (1) or something like it. The continuum had to be
represented by a set of points with a determinate membership
before it could be assigned a number.
How could this transition have come about? How were the
paradoxes of the infinite overcome? So far we have seen that the
classical finitist can stand his ground, admitting only the notion of
the potentially infinite, without thereby being committed to the
existence of any actual infinite provided that (a) he distinguishes
between continuous and discrete wholes, between wholes given
prior to their parts (where the identity of the parts depends crucially
on that of the whole of which they are part) and wholes given after
their parts (where the identity of the whole is determined by that of
its parts); (b) that he insists on the distinction between essential and
accidental generalization, or at least between extensional and non-
extensional readings of ‘all As are B’; and (c) that he insists on the
distinction between the indefinite and the potentially infinite.
Moreover, even if one admits that every potential infinite pre-
supposes an actual infinite, this still does not overcome the
apparent contradiction involved in thinking of a continuum as
made up of points. The actual infinite, even if it is metaphysically -
inevitable, does not thereby become a possible object of know-
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ledge, or a contradiction-free and therﬁefor; usable r.nathematlcal
concept. Pascal indeed used the actual infinite as a foil, as a ngns
of proving the existence of a being, knowledge and understan: lngf
of which transcends all human rational capacities. We can kn.ow’o
its existence but cannot comprehend it. This is not without
significance for, as we shall see, Cantor too was obh_ged to ?dnnt a
notion of the absolutely infinite, which he also associated with Qod
and which had to be placed outside the range of mathematical
tion and comprehension. ‘
coﬁ?cz::situaﬁon the gassical finitist has a strong case. He is at least
in a good position to engage in metaphysical and eplst§molo%1ca}1
arguments with his opponent and has the upper hand epistemo qg1:
cally, where it would seem that the actual mﬂmtf: can Play no mgmﬁe
cant role. But his position will be changed rad}cauy if (a) it can €
shown that a coherent conception of the continuum as an mﬁltxultael
collection of points is after all possible, and @) th'flt tl-le actu:
infinite plays a significant role in the mathematics wplch is _used in
and is necessary to the natural sciences, and physics n particular.

1 The Algebraization of Geometry

The pressures which brought down the ediﬁcg of classical, _Ansto(;
telian finitism did indeed come from within mathematics ar;l
physics. Ultimately they derive from thg: demand for' a numen(;: l,
practically applicable handling of continuous magnitudes and 1n
particular of continuous change (including, of course, mouoré).
With hindsight it can be seen that the cx:uc;xal moves had already
been made by Descartes in his La Géométrie , where he argues tht?t
Euclid-style definitions of geometric ﬁg}lres shquld be replace_:d hy
definitions given in the form of algebraic equations. From tl.ns the
notion of a function rapidly followed in the work of L.elbDI? and
Newton, and it is the subsequent development of t.hl.S conc?pt
(which is all-important to the mathematical ?hysxast) whxtflslh
apparently dictates the punctualization of the continuum. But at the
same time it introduces a new, specifically qathemaucal concep-
tion of totality (set or class) — a whole given neither before nor after
its parts, whose membership is to be regarded as determinate,
generalization over which must be treated as exjtensmnal bqt non-
accidental. In other words, there arise mathematical conceptions of
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totality which cross-cut prior philosophical distinctions and which
primarily inform Cantorian set theory and subsequent axiomatiza-
tions.

The logicist prograxm{e\ for providing a rigorous foundation for
analysis superimposed the logical notion of class on these mathe-
matical conceptions in a way which conceals their distinctive
character (for indeed the logicist claims that there is here no distinc-
tion). But, in the face of Zeno’s paradoxes, a condition of the
possibility of treating the continuum as a totality of points, without
absurdity, is the emergence of new ways of thinking about totalities,
new ways of conceptualizing and reasoning about continuous
wholes which synthesize the traditionally distinct notions of contin-
uous and discrete wholes. This opposition had to be transcended in
the production of any such synthesis.

It will, therefore be necessary to sketch the course of this
synthesis and the emergence of new ways of conceptualizing
totalities. This can be no more than an impressionistic sketch, for
the history here is complex and technical (any mathematically and
philosophically rigorous treatment would require many volumes).
Those wanting more rigour and/or more detail are referred to the
suggestions for further reading at the end of the book.

It should come as no surprise to find that mathematical, rather
than philosophical, considerations are those which pose the real
challenge to the classical finitist. It is important to locate this
challenge more precisely than is frequently the case, for it is only in
this way that we can come to see exactly what sort of sense is made
of the actual infinite within mathematics and so to assess the wider
implications of its mathematical use. It is customary to treat the
invention of infinitesimal calculus as marking the occasion of the
really significant intrusion of the actual infinite into mathematics.
While it is true that the calculus was introduced (and perhaps could
only have been introduced) in a philosophical climate of meta-
physical acceptance of the infinite (a climate of rational theology), it
is not the mere introduction of methods of differentiation and
integration which dictates the move either to a point continuum or
to an actual infinity.

The original introduction of the operations of differentiation and
integration was geometrical. As geometrically grounded they can
(as the later work of Weierstrass and others showed) make do with
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traditional geometrical concepts of cpntinuity, the potetrlllual ntxiﬁmf));
of points of division, poten ially inﬁmt'e sequences and the no on1 o
a limit, even if when loosely described they appear to 1nvo
infinitesimal magnitudes and
lélc?r?t:tz;crsll?ea:)ictured as giving the gradient qf the tangent to etl c?rt;:
y =f(x) at a given point (x, y) by treating 1t as tk.le i%rggilft; 0s v
line from (x, y) to (x +9, f(x + &)) when 9 is ;:ly smal
(figure 4.1). (A condition for this to be defined is thatones ()}(11 ¢ l.gm
the same result by approaching from the right, 1.e. by cons g

lines from (x — &, f(x — 6)) to (x,Y))

actually infinite division. Differentia-

v
< ju+d
fx)
x x+0 —
Figure 4.1

i d treat the gradient as the ratio of two infinitely sxr}aﬂ
qufnhiisti‘:: }léx +0)— f(%c), and 6, but raises the awkward questxor;
of how an infinitely small quantity differs fron_l 0, and of how f;n:n
can divide by such a quantity and dlstu}ngh the fesult c;u_
division by any other infinitely small quantity. Pz'xrad.oxlcz.xl. cprrl:‘: v
sions quickly follow as Berkeley pointed out 1n hlS- criticis o
Newton’s use of calculus (Berkeley, 1734). These dlfﬁcfulpesfaan
avoided by treating the gradient of the tangent as the hnx ?1 A
infinite sequence of ever closer approximations each of whic
ratio between finite lengths, i.e. as

im  JE T~ f()
6-0 S

Similarly the definite integral can be pictured as giving the arlf::.:
under a given section of a curve y= f(x). This area can
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approximated by chopping it up into rectangles and adding their
areas together. The narrower these rectangles are, the better the
approximation is. The areas might thus be thought of as the sum of
infinitely many, infinitesimally thin rectangles which still somehow
manage to have a non-zero area. But the area can also be defined as

a limit approached by summing over successively thinner, but still
finite, rectangles (figure 4.2).

yA

=y

a x, x, b

Figure 4.2

f:f(x)=’11i3_}2((x1 —a)f(a)+ (x;— x)f(x) F. . (0 2, )f(x)

The idea of a limit, the limit of an infinite sequence of ever
closer approximations to a given quantity, thus supplants the
infinitesimal and it would initially seem that such sequences need
only be regarded as potentially infinite. For the idea of an infinite
sequence of closer approximations to a given limit is already
present in Zeno and the classical finitist could get away with
potentially infinite sequences there. He can continue to do so in
this case provided that he sticks to differentiation and integration
as geometrically picturable and interpretable operations. For here
the limits to which an approximation is sought are already geo-
metrically defined independently of any sequences of approxima-
tion to them. The gradient of the tangent to the curve is
geometrically given by the ratio AB/XB, i.e. this ratio exists, the
only problem is to put a number on it. Similarly, any closed plane
figure is presumed to have an area, even though its measurement
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may be problematic. The infinite sequences involvpd are t.hen just
the familiar potentially infinite sequences associated wlth con-
inued, ever finer division. . o

tlnRestricted to this almost purely geometric form, differentiation
and integration are merely modifications of existing geo;np?ncal
techniques (Archimedes methods of exhaustion and of indivisibles,
and various methods for constructing tangents to curves). What
then, was the essential novelty? For there is no doubt that the
methods of infinitesimal calculus were new and pgwerful, anfi
moreover that they were perceived, both at the time of ﬂ'lelr
introduction and since, as involving the infinite in mathematics m a
way which did not occur with the geometer’s recognition of the
infinite divisibility of a continuous magnitude. .

What is new is the fact that they form part of a calculus. Itis the
context of introduction which makes the differenpe. These things
are not merely conceptualized as hmlts of infinite sequences.of
approximations, but are associated with methods of computing
values of limits of such sequences. As such they are part of, and
indeed central to, the motivation of the algebrai;aﬁc.)n of. geometry.
It is the algebraic representation of the (potentla;) mi?mte alread();
inherent in standard geometrical practice that gives it a new an
problematic, because number-like, status. The algebraic represetrtlt-1
tation gives us at least the appearance of beipg able to calculate wr
the infinite and with infinitesimals. If we write

‘]jm,

r example, it is tempting to read ‘n > oo in the same way as
frc; - 1008’ and thus aspif °0g were some value that n might actu_ally
attain, even though the geometrically guided use of the whole limit
expression neither warrants nor requires this. Mpreover, altho:ﬁh
the algebraic notation and its associated operapong were mm_ y
introduced as linked with an intended geometrical mt(?rpretaUQr},
they soon take on a life of their own, going bfayond what is geometr1-
cally representable or picturable. The question gf what sort 9f sense
is to be made of operations and expressions Whls:h have their origin
solely in the algebraic, symbolic represen.tanon .then becoqlzsl
urgent and there is a pressure to give anthmetlf:al, numeric
interpretations primacy over geometrical interpretations and hence
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for a rigorously and independently founded arithmetical-numeri-
cal representation of the continuum.

It was Descartes who first systematically introduced algebraic
methods into geometry, insisting that the ebjects of geometry,
geometrical figures and curves, should be defined not in the manner
of Euclid, but by algebraic (polynomial) equations. He thought of
such an equation as giving the law according to which a point would
have to move in order to generate a curve. Thus for example a
circle, centre (a, b) and radius 7, is given by the equation

(x—ap+(y—by=r?

Its circumference is traced out by a point (x, y) which moves in
such a way as always to satisfy this equation (figure 4.3). There are
here several important moves away from the classical tradition of
Euclid and/or Aristotle. They were not all initiated by Descartes
but were first brought together by him.

4

‘e O

T

|

l

[
Wi
<l
:%

Y

Figure 4.3

In the first place, Descartes is using variables, symbols such as ‘x’
and ‘y’ to stand for quantities which change. Their immediate
interpretation is a geometric one; they stand for distances or lengths
along a given axis from the point where they intersect (the origin).
But Descartes also quite explicitly treats these lengths as themselves
representing any other continuous magnitude which one might
happen to be interested in. Thus change of temperature with time
may be pictured geometrically by taking lengths on one axis as
representing temperatures and on the other axis as representing
times. Moreover the same goes for areas and volumes, these too
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may be represented, as continuous magnitudes, by line lengths. This
is a departure from earlier practice where it was presumed that ifa
and b are line lengths then a X b stands for an area. Because
Descartes is prepared to allow that any continuous magnitude can
be represented by a line length he can allow that there must be aline
length to represent a X b. In this way he makes line lengths closely
resemble numbers in that multiplication and division are now
operations defined over line lengths, whereas previously only
addition and subtraction had seemed to make sense. This allows
Descartes to make geometric sense of expressions such as x> which
would otherwise have to have been thought of as the ‘volume’ of a
five-dimensional cube. It is this step which is crucial to being able to
regard a polynomial equation, such as

y=ax’+ax*+ax*+tax’tax+ag

as defining a curve 1:1 a two-dimensional space. Descartes thus
assumes that all continuous magnitudes and all ratios between them
(whether they are commensurable or not) can be represented by
lengths. In this way the theory of ratios and proportions between
continuous magnitudes was swiftly turned into an ‘arithmetic’ in
which ratios are treated as numbers of a new kind. These ratios
would include not only those between commensurable magnitudes,
but also those between incommensurable magnitudes, i.. ratios
known not to be expressible as ratios between whole numbers, such
as 2 and 7. :

Secondly, the focus of geometric attention is turned away from
closed figures to continuous paths, whether forming closed curves
or not and on their algebraic characterization - the characterization
of a ‘motion’ which will generate the curve. This means that one is
no longer dealing with continuous wholes as wholes which are
bounded and limited and in this way given before their parts.
Instead they are treated as generated wholes which may be
potentially infinite but which are given by the algebraically
expressed law constraining and determining their generation.

It is important that the early development of algebraic, analytic
geometry was closely, and indeed almost inseparably, bound to the
development of mathematically expressed theories of mechanics. It
is this which means that the most common way of thinking of the
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relation between a curve and the algebraic expression which
defines it is by thinking of the expression as a law of a generating
motion. Calculus itself was developed with a view to providing a
quantitative treatment of change, and rates of change. It-is-thus in

terms of motion that limits are interpreted and understood. Thus
Newton wrote:

Perhaps it may be objected that there is no ultimate propor-
tion of evanescent quantities: because the proportion before
the quantities have vanished, is not the ultimate: and when
they are vanished, is none. But by the same argument, it may
be alleged that a body arriving at a certain place, and there
stopping, has no ultimate velocity; because the velocity before
the body came to that place is not its ultimate velocity: when it
has arrived it is none. But the answer is easy; for by the
ultimate velocity is meant that with which the body is moved,
neither before it arrives at its last place and the motion ceases
nor after, but at the very instant it arrives: that is, that velocity
with which the body arrives at its last place, and with which the
motion ceases. And in like manner, by the ultimate ratio of
evanescent quantities is to be understood that ratio not before
they vanish, nor afterwards, but with which they vanish. . ..
There is a limit which the velocity at the end of the motion may
obtain, but not exceed. This is the ultimate velocity. And there
is the like limit in all quantities and proportions that begin and
cease to be. And since such limits are certain and definite, to

determine the same is a problem strictly geometrical. (New-
ton, 1934, pp. 38~9)

In this context differentiation is (a) defined as an algebraic
operation, and (b) interpreted as giving the rate of change of one
quantity (represented on the y-axis) with respect to another
(represented on the x-axis) at a point. Thus if

d
Y —2ax+b

= 2 —_—
y=ax?+ bx +c, P

and the ‘rate’ of change of y with respect to x does not have to be
worked out for each point separately; it is given by a new equation.
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Integration is also defined as an algebraic operation and as the
inverse of differentiation; so

[2ax+b dx=ax*+bx+k

Moreover, their definition as algebraic operations allows for
repeated applications (even though these may not always have an);
natural physical interpretation). Ifd )f/ dx gives the rate 2of cha;lgft g
y (position) with respect to x (time), 1.e. ve}oc1ty, thend y/c}x gﬁn S
rate of change of velocity with respect to time, 1.€. acce?leratlon. s
makes it possible to talk of and put Yalues on instantaneous
positions, velocities and accelerations whilst also having eguatmns
which characterize the ways in which they, are changing. The
algebraic characterization of both motions anq ge‘:ometnc curves
thus marks an enormous increase in descriptive pOWer. An
equation is a source of information about any pomt one ch.ooses
(and in this sense is an infinite description of all Pomts) whichis also
a characterization of the whole which is not built up from informa-

i ut points.
uogoall;gsidle)s the potentially infinite, discretely generated sequence
of the natural numbers, there is now, in addition, the conc.eptlon of
a line which is continuously generated, in accordance with a law,
and which does not involve constructing a point from those wthh
preceded it, but merely ensuring that a constant, cgmplex ratio,
expressed algebraically, is preserved. Regarded'm this way we can
imagine the construction of a graph in the following way: a point can
be construed as carrying out motions away from the origin in the
direction of both the x- and y-axes simultaneously. Suppose that

yﬂt

1 x
Figure 4.4
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motion along the x-axis is uniform, continuous and has unit
velocity. If motion in the direction of the y-axis is also uniform,
continuous and has velocity k then the resulting graph will be a
straight line whose gradient is k and the equation of the motion will
be y = kx (both motions being referred to the same equably flowing
time). This is shown in figure 4.4.
Suppose now that motion in the y direction is initially v, but is
uniformly decelerated (acceleration —a), then x =¢ and y =3[v +
(v — at)]t, ie. y= vx — 3ax? and what we get is the path of a
projectile (a parabola) as shown in figure 4.5. The composition of
the non-uniform motion with the uniform motion has the effect of
‘bending up’ the straight line which forms the x-axis.

yA

=y

Figure 4.5

But just how non-uniform might the motion in the y-direction
get? If y =sin x we have a wave function. And wave functions can
themselves be superimposed on one another to give quite complex
patterns — as when the ripples sent out by two or more pebbles
meet. So we might get a motion which is ‘oscillatory’ in a compli-
cated way. Daniel Bernoulli (1700-1782), when approaching the

problem of how to write down an equation for the motion of a
vibrating string said:

My conclusion is that all sonorous bodies include an infinity of
sounds with a corresponding infinity of regular vibrations. . . .
Each kind multiplies an infinite number of times to accord to
each interval between two nodes an infinite number of curves,
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such that each point starts and achieves at the same instant,
these vibrations, while following the theory of Mr Ta_\ylor, each
interval should assume the form of the companion of the
cycloid extremely elongated. (Manheim, 1964, p. 41)

The equation given to reflect the superposition of this infinity of
curves is

3x

. . 4dmx
y= asin‘%x + ﬁsin%t—x + ysin=,~ + Osin—~ +

The idea that one could use sucha superposition of ‘wave
functions to represent, algebraically, a given curve over a guiin
interval proved to be crucial both for the development of the
concept of a function and of set theory.

At the time at which Bernoulli was writing, 1t was pFesgmed that
two functions which coincide over an interval w1ll copc@e every-
where and that any algebraic equation in wh}ch y is given as a
function of x is geometrically representable, whilst not all geomqt;:l
cally drawable curves are algebraically repre.sentable. The initi !
problem was precisely that of finding analyt‘lc, a'lgeb’ralc exlt);ese
sions (laws) to characterize given curves or motions’. AIflS t;a;n
was disagreement between D’Alembert who' equz}ted a functl
with its algebraic expression, and Euler who 1den.tjﬁed a funcl(:ilon
with its graph. The efforts to generalize Bfarnoglh s results an to
find the conditions under which an infinite trigonometric series
actually represents a given function led eventually to the theory 02
point sets and provided the stimulus for Cantor’s introduction O
ordinal numbers. _ .

Fourier gave a precise statement of the geperahzed problen;
given an arbitrary function f(x), find the coefficients a, and b, suc
that the equation

f(x)=% + = (a, cos nx + b, sin nx)

n=1

shall be an identity over a prescribed interval qf the x-'flxis. fI‘he very
statement of this problem marks a shift firmly in the direction of (2)
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equating a function with its graph, for Fourier’s arbitrary function
means an arbitrarily drawn function, (b) treating algebraic expres-
sions as capable of representing (piecewise if necessary, i.e. using
different representing functions for different intervals) every
drawable geometric curve. “

In the course of investigation of this general problem posed by
Fourier, a number of ‘pathological’ functions were discovered,
functions which were algebraically expressed in terms of infinite
sums but whose ‘graph’ is unpicturable. To see how these can arise
we have to note that, given the indefinite divisibility of the con-
tinuum, there is no limit to the number of oscillations that can be
packed into a given interval (their frequency), and given its
unbounded nature there are no upper limits which can be placed on
the amplitude of such oscillations. Functions which are expressed
as complicated wave functions will, however, always be continuous
(see figure 4.6). A discontinuous function is one which jumps’ at
one or more points (see figure 4.7).

If there is no limit to the frequency with which motion in the y
direction might oscillate, then might it oscillate with an infinite
frequency? That is, might it be the case that no matter how small an

y
x
Figure 4.6
yA
/] X
Figure 4.7

Numbering the Continuum 81

interval we take there will be an oscillation contained within it (i.e.
the graph will have changed direction) m this interval? This is what
would appear to be the case with Wew;strass’s everywhere con-
tinuous but nowhere differentiable function

f(x)= éob" cos(a"x)

where a is an odd integer greater than 1, b is a positive constant less
than 1 and ab is greater than 1.1t can be shown that for.any point x,
the difference quotients (giving ‘gradients’) approaching from the
right and from the left have a different sign no matter h(?w close one
gets to x,. So the function, though continuous, 15 notfhffere{mable
at any point. Riemann provided an example ofa ft.mgtlon whlch hgs
infinitely many discontinuities between any two limits but which is
none the less integrable.

o=@ + G2 Gy - 3 )

where

(x) = the excess of x over the nearest integer
(x) = 0if x is midway between two Integers

0]
—1<x<3

f(x)is convergent for all values of x, but is discontinuous for all x of
the form p/2n, where p and n are relatively prime. Thus f(x)1is
discontinuous an infinite number of times in every arbitrarily small
interval. But f(x) is not too wild; the number of jumps larger thana
given s is always finite. So it is possible t0 ‘chop the regions mto
small enough bits so that within each bit the jumps are smalle,r than
s, and so to get successive approximations of the ‘area under’ f(X)-

With such pathological functions we see the power of the
algebraic symbolism and symbolic operations to outstrip geometnc
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intuition. These functions are not picturable and thus disrupt the
assumption, based on picturable cases, that continuity, integrability
and differentiability go together. But more than this, the infinitely
dense packing of either continuous or discontinuous oscillations
compels recognition of a complex structure in the apparently
simple, homogeneous, equably smooth flowing linear continuum,
Such functions have the power to introduce divisions in the
continuum, not one at a time, but in an unpicturably infinite density
all at once, as it were. It should be noted that this is done with
functions which are themselves defined using limits of infinite
series.

It is here that we have the ground of the undermining of the
classical finitist position. Functions had been conceived in insepar-
able association with their graphs — the ‘paths’ traced by points
moving in accordance with an algebraically expressed law. But
when that law dictates a ‘motion’ which involves infinitely frequent
oscillations, or infinitely frequent jumps, it is a path which can no
longer be geometrically traced either in the mind’s eye or on paper.
But if the law can be written and by this means rationally investi-
gated, the graph of the function must be presumed, in some sense,
to exist and to be a totality of points over which our only hold is now
algebraic. These points are the members of the set of values of a
function f(x) for each x considered as a numerical argument. Thus
it becomes necessary to think of the original, smoothly continuous
line as itself a set of points, each indexed by a number, and which
has an unimaginably, because infinitely, complex order structure.

Sets so conceived are actually infinite totalities, given neither
before nor after their points. Not before, because the points are no
longer points of potential division successively generated and not
after because the totality is not defined by reference to characteris-
tics of points (for points are in themselves identical to one another).
Indeed, if we are thinking geometrically, a function does not
uniquely define a set of points in the plane, for the set of points
which constitute its graph is dependent on the unit chosen. To take
a very simple example, consider our parabola given by the function
y =ax — bx?2 Under two different choices of unit it will define two
different sets of points (figure 4.8). (The inner curve results from
doubling the unit on both axes, i.e. is the graphof y " = ax * — bx "
with x "= 2x, y" = 2y.)
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Figure4.8

Geometrically, then, itis only relative to a unit, or measure, that a
function can be correlated with a set of points. What the algebraic
expression does is to replace the old geometric definitions of figures
in the sense that these are definitions characterizing a certain kind
of spatial structure or configuration, which can be realized on all
sorts of different scales. When we think algebraically and think in
terms of sets of numbers, rather than sets of points, then it is clear
that the set of numerical values of a function is unique. The numbers
here serve as a means of specifying a structure which, in some cases
we have no other means of specifying, a structure which can be
instantiated in many different ways depending on the way in which
points, lengths or other continuous magnitudes are assigned
numbers (measured). In the case of the function neither law nor
graph takes precedence, for the graph, the path, is the geometrical/
mathematical object of study, but it is given as such only via the
function which defines it. Complex structures are the wholes with
which the mathematician is concerned and which his algebraic
notation also suggests are wholes composed of indivisible points —
sets of points indexed by numbers. If the function is well defined
(can be shown to have a unique value for every argument) then
membership of the set of points constituting its graph (relative to a
given measure) must be determinate. But since the path may be
indefinitely long, the sets of points may be indeterminate in the
sense of being unbounded. Generalizations over such sets of points
are grounded in the function of which they are the graph, not in the
characteristics of points. It is the structure of points, the relations
between them, which are important.
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The pathological functions finally showed the power of algebra
to outstrip geometrical intuition. Geometry and motion could no
longer be relied upon to provide the basis for analysis; it could not
function as the background against which its operations were to be
interpreted and tested. Analysis would have to become algebrai-
cally autonomous. This was the motivation behind arithmetization.
There was a need to provide an account of continuity, differentia-
bility and integrability in numerical terms, terms not drawing on
geometrical intuition.

2 The Arithmetization of Analysis

But how was a purely arithmetic theory of limits to be constructed?
Starting from the positive and negative integers it is possible to
define positive and negative rational numbers (or fractions) as
ratios between integers, and to give rules for their addition,
subtraction, multiplication and division. But the rational numbers,
although densely ordered (between any two rational numbers there
is always a further rational number), do not form a continuum.
There are more points on a line than can, after selection of a unit, be
represented by rational numbers. This is the traditional problem of
the existence of incommensurable magnitudes. Lines of, for
example, length /2 can be geometrically constructed and proved
not to be representable by any rational number. So geometrically
the limit of a sequence of rational approximations to /2 is known to
exist. But if geometrical intuition is to be dispensed with, then it
cannot be presumed that the limit of such a sequence of rational
numbers exists; rather such limits have to be introduced by means
of definitions which do not presuppose their existence. From the
purely arithmetic basis there are as yet only rational numbers and
infinite sequences of rational numbers, some of which converge and
some of which do not. The aim is to arrive at an arithmetically

defined/constructed set of numbers which could adequately -

represent (by indexing) the points on a line.

The intuitive link between the conceptions ‘point’ and ‘real

number’ is clear in Dedekind’s way of defining real numbers. After
noting that the straight line L is indefinitely richer in point
individuals that the domain R of rational numbers is in number
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individuals, because there are infinitely many points in the straight
line that correspond to no rational number, he says:

If now, as is our desire, we try to follow up arithmetically all
phenomena in the straight line, the domain of rational
numbers is insufficient and it becomes absolutely necessary
that the instrument R constructed by the creation of the
rational numbers be essentially improved by the generation of
new numbers such that the domain of numbers shall gain the
same completeness, or as we may say at once, the same
continuity, as the straight line. (Dedekind, 1963, p. 9)

This led him to ask ‘In what does this continuity consist?’ I_-Iis
answer is that the essence of continuity lies in the following
principle:

If all the points of the straight line fall into two classes such that
every point of the first class lies to the left of every point of the
second class, there exists one and only one point which
produces this division of all points into two classes, this
severing of the straight line into two portions. (Dedekind,
1963,p. 11)

The ‘discontinuity’ of the rational number sequence is thus seen to
lie in the fact that not all cuts in it are produced by rational numbers,
where a cut in the rational numbers R is

any separation of the system R into two classes A, A, which
possesses only this characteristic property that every number
a, in A, in less than every number a, in A,. (Dedekind, 1963,
pp- 12-13)

Thus if A, were the set of all rational numbers less than 3 and A,
were the set of all rational numbers greater than or equal to 3 th}S
would be a cut produced by the rational number 5. Whereas ifA,1s
the set of rationals less than /2 and A, is the set of rationals greater
than /2 this would be a cut (every rational number lies on one side
or other of |2) but it is not produced by a rational number.

In order to create a continuous numerical domain one needs a
number system in which all cuts are produced by, or correspond to,
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numbers of that system. This is achieved by saying that whenever a
cut (A, A,) is not produced by any rational number, ‘we create a
new, an irrational number a, which we regard as completely
defined by this cut’ —

From now on, therefore, to every definite cut there corre-
sponds a definite rational or irrational number, and we regard
two numbers as different or unequal always and only when
they correspond to essentially different cuts. (Dedekind,
1963, p. 15)

Moreover, the extended domain of numbers created in this way
proves to be closed under the operation of forming cuts. i.e. if one
considers forming cuts in the sequence of real numbers, there will
always be a real number which produces it. Thus, in this sense, the
domain of real numbers can be said to be continuous. In addition, in
order to justify his claim to have defined new numbers, Dedekind
had to show that ‘cuts’ in the sequence of rational numbers can be
added, subtracted, multiplied and divided in such a way that when
the cut is produced by a rational number these operations reduce to
the familiar operations on rational numbers.

The way in which Dedekind ‘creates’ his real numbers draws on
the combinatorial approach to sets considered in chapter 3. His
cuts are amongst the possible selections from the set of rational .
numbers and the totality of cuts is the totality of arbitrary selections
which meet the defining condition for being a cut. It is thus a very
non-constructive approach in that it treats cuts as pairs of sets
without considering how these sets may themselves be specified. He
has to presume that the totality of rational numbers is a fixed,
actually infinite totality with a determinate membership; moreover
itis a densely but linearly ordered totality (between any two rational
numbers there exists another rational number and given any two
rational numbers, a, b,a=b,ora < b,ora > b).

If the sets of rational numbers constituting a cut were not thought
to have a determinate membership, then the cut itself would not be
precisely defined. This approach is non-constructive not only in its
use of actually infinite totalities, but also in that the cuts are
presumed to exist independently of sequences of approximation or
of any means of defining the sets which constitute them. They are

Numbering the Continuum 87

introduced by strict analogy with the geometric potential divisibility
of the continuum, but once divorced from the geometric analogy, as
in all strictness they are supposed to be, they have been cut off from
any operation which might ‘produce’ the cuts and which gives a
hold on the notion of division as a potential. The assumption of the
existence of limits is replaced by the assumption of the existence of
arbitrary selections from a given set.

The alternative route to the creation of real numbers, adopted by
Cantor, is in some respects more constructive in its approach. The
set of rational numbers R, considered as a representation of the
points on a line, is incomplete in the sense that there are lengths, and
hence points of division, which can be given a rational approxima-
tion of any desired degree of accuracy but can receive no exact
numerical representation, ie. there are infinite convergent
sequences of rational numbers which have no rational limit. A
sequence {a,) of rational numbers is a fundamental sequence if
for any positive rational ¢ there is an integer k such that,
|8,4m — a,| < € for any m and all n > k. Cantor identified the new
(real) numbers with these sequences and showed that one could
define an order on them by saying thatif (a,) = b,(a;) = b",and if
for any positive rational ¢ there is an integer k such that for
alln >k '

|a,—a))<e then b=0b"
a,—a, >¢ then b<b”
a,—a, >—¢ then b<b"

So two such numbers are equal if the sequences which define
them vary by less than any given ¢ after a finite distance. It follows
that given any rational number a, the constant sequence (a) (whose
limit is @) is such that either b =a, or b<a, or b> a, for any real
number b. Arithmetical operations can then be defined for the new
numbers '

b+b’=b" meansthatlim(a, +a,—a;)=0
b-b’=b" meansthatlim(a,a,—a,)=0
So the bs now look and behave like numbers and they incorpor-

ate within them a model of the rational numbers. Cantor went on to
iterate this process:
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C is the set of numbers expressed.as fundamental sequences of
members of B

L is the set of numbers expressed by fundamental sequences of
members of K

Now the relation between A and B is different from that between
B and any subsequent domain reached by this style of definition in
that although every a belonging to A is represented in B, there are
elements in B which have no counterpart in A. But for C it can be
shown that every element of C already has a counterpart in B (and
B can be shown to be isomorphic to Dedekind’s real numbers).
Thus in one sense no new elements are created, however many
times the process is reiterated. Yet as sequences the members of C
are quite distinct from members of B, they are sequences of
sequences of rationals.

3 Toward Infinite Ordinal Numbers

After selection of a unit of measurement and an origin it can be
shown that every point on a line can be indexed by a unique element
of B, and Cantor postulated that to every element of B there
corresponds a unique point on the line which it represents. Soin B
we would already seem to have an arithmetical model of the
continuum. Why, then, did Cantor go on to iterate the procedure
and think it important to distinguish between the members of B and
subsequently formed ‘numbers’ even though B already contains the
limits of all fundamental sequences of elements of B? This relates
to the motives for wanting an arithmetical representation of the
continuum in the first place. It is to try to achieve some representa-
tion and understanding of the complexity of its point structure as
revealed, for example, by the pathological functions, and to
produce a definitive and general answer to Fourier’s representation
problem. Dedekind’s method of introducing real numbers reflects
only the basic geometrical intuition of arbitrary divisibility. Cantor
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is concerned to exhibit the complex fine structure — the order
structure — of points on a line. It is to assist with this that he
distinguishes between points in terms of the types of series of which
they are the limit. He considers a set P of points on the line
(considered as indexed by numbers) and gives the following
definition.

By a limit point of a point set P 1 mean a point of the line for
which in any neighbourhood of the same, infinitely many
points of P are found, whereby it can happen that the (limit)
point itself also belongs to the set. By a ‘neighbourhood’ of a
point is understood an interval which contains the point in its
interior. Accordingly it is easy to prove that a point set
consisting of an infinite number of points always has at least
one limit point. (Dauben, 1979, p. 41)

Given any point set P and any other point on the line, it either is
or is not a limit point of P. Thus each P has a well-defined set P of
limit points, the first derived set of P.If P = R (the set of rationals),
P®M =B, the set of all real numbers expressed as limits of funda-
mental sequences of rationals. But P might be any infinite set, so
PO might not be B.If P® is infinite the operation can be repeated.
Either there is some finite n such that P s finite and hence P(**")
does not exist, or there is not. In the case of R, since iteration always
leads to the full set of points of the line, there is clearly no such #.
This suggests that if there are sets of points for which the iteration
stops at some n, they are not fully continuous although they have a
certain non-uniform kind of density. A point p which is expressed
as a limit of sequences of sequences of rational numbers is the
derived set of a set of points each of which is the limit of a
fundamental sequence of rationals.

PO,

(p}=P® P® = (lim (b,)}
n-*o0
P® is then a set of points which cluster round p. But each of
these is itself expressible as a limit of a sequence of rationals. So P is
a set of rationals which cluster round p with a particular type of
dense ordering. The n, if it exists, for which P( becomes finite is
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then a sort of measure of the ‘density’ of clustering of rationals in P
round a finite number of points. P is not an evenly distributed dense
set, but is locally dense in a finite number of places.

But Cantor did not stop here. For if P(" is not empty for arﬁ
finite n, then clearly, even if the operation were iterated an infinite
number of times, there would still be a set, and Cantor introduced
P~ to indicate this and P**! to indicate the derived set of P*. % and
co + 1 are new infinite, ordinal numbers and they make their first
appearance as indices of the iterations of an operation designed to
characterize the structural characteristics of sets within a point
continuum and hence the possible intricacies of behaviour of
functions and their representation by trigonometric series.

The transfinite ordinal numbers thus first come into being as a
way of indexing iterations of the operation of forming the derived
set of a set of points. They appear to be required by the attempt to
characterize the distribution of points in a continuum. As initially
introduced, they do not, and were not intended to put a number on’
the points in the continuum, although this was the question which
later came to preoccupy Cantor. Before seeing how this question
arises, however, it is worth considering where the developments
described above leave the finitist.

4 Conflict with Classical Finitism

The crucial question for the classical finitist is whether the funda-
mental sequences of rationals, in terms of which the real numbers
are introduced, can be considered as potentially infinite sequences,
and indeed whether the rational numbers themselves can be
considered as a merely potentially infinite totality. Initially the
answer in both cases might be thought to be ‘Yes’, but a closer
inspection of what is required to produce an arithmetic point
continuum, which can dispense with geometrical intuition whilst at
the same time preserving results founded upon it, suggests that this
is not the case. The reason for this is that a class cannot be regarded
as potentially infinite unless it is thought of as generated by a non-
terminating process. So the possible potentially infinite sequences
of rational numbers are those which can be generated in some way,
either by a law or by a sequence of choices, whether free or
constrained. Any such sequence is only ever given as a finite
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fragment plus a generating process, with the consequence that such
a sequence is not uniquely given by its (actual) terms, any more th::m
a species, or a subset, of the natural numbers is given by its
members. ‘

Thus the sense in which such a sequence may be said to have a
limit must be given by the condition for convergence. A sequence
{(p,) of rational numbers is convergent if and only if, for any
positive rational number d, there is a positive 1nteger n such that
the absolute value of the difference between p,, and any subsequent
term of the sequence is less than d. To say whep a sequence
converges is to say what it is for a sequence to have alimit. The limit
is not something which is independently given apd to which the
terms of the sequence can be thought to approximate ever more
closely. This means that any extensional statement about sx‘xch a
sequence (i.e. one which is true of any other sequence which 1s
extensionally equivalent to the given sequence) has- to be true or
false on the basis of a finite amount of information about the
sequence. For example, two convergent sequences are said to

converge to the same limit if and only if there is some pqint in the
sequences after which the difference between correspondm.g terms
becomes arbitrarily small. If there is no law generating the
sequences (they are free choice sequences) then it w111.n(_)t be
possible to say that they do or do not converge to the same limit, for
all we will have to go on will be finite initial segments of tljne
sequences, segments which give no assurance about how th.ey will
continue. Since there are indefinitely many sequences with the
same finite initial segment this means that any statement we can
make about a lawless sequence (on the basis of knowledge of some
finite initial segment of it) will not be true of just that sequence put
of indefinitely many — all those which share the particular initial
segment. .

The totality of all potentially infinite sequences of ranpnals, or
even of all convergent or fundamental sequences of .ranonz?ls., is
thus like the set of all subsets of the natural numbers, in thatitisa
potentially infinite whole containing members which are never fully
determinate, for they themselves are potentially infinite, and a}ways
actually finite but necessarily incomplete. This does not yield a
point continuum in anything like the sense presumed‘by Cantor, for
its members do not have the precise identity required of points.
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When this approach to real numbers is interpreted geometrically
we get precisely identifiable points of division corresponding to the
rational numbers together with the possibility of focusing O}an
ever smaller region in order to locate a ‘point’ indexed by a(mon-
rational number, a possibility which is guaranteed by the dense
ordering of the rationals (between any two there is another). But
since the process of focusing is not, and never can be, complete, the
continuum is never resolved into points, only into ever smaller
regions.

For example, consider the set of real numbers between 0 and 1 as
given by their binary decimal notation. All such sequences can (as
in figure 3.3) be represented by the full binary tree which can be
thought of both as the making of successive choices about whether
to put 0 or 1 in the nth decimal place and as the making of
successive divisions of the unit line. All the points corresponding to
an infinite sequence with an initial segment .0001 ... lie in the
interval [, #|. Each addition of a level to the tree chops the line up
into smaller bits (figure 4.9).

It is, however, possible to develop a theory of ‘real numbers’ and
functions over them on this basis (see for example Bishop, 1967,
Troelstra, 1977). The result is intuitionist, rather than classical,
analysis and they are by no means equivalent. But what is important
from the point of view of our present investigations is the fact that
both approaches can be pursued. This means that the classical
finitist does not have to back down. On the other hand, his position
has lost much of its plausibility. With the development of the
classical theory of real numbers on the foundations suggested by
Cantor and Dedekind it has become possible, without obvious
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incoherency, to think of a continuum as ‘made up’ of points (strictly
as a set of points). Moreover, this view seemed to be required by the
way in which functions defined over real numbers are customarily
associated with their ‘graphs’.

The arguments derived from Zeno’s paradoxes against taking a
continuum to be made up out of points are circumvented because
the ‘construction’ of the real numbers, which is the initial vehicle for
thinking about a point continuum, is not a geometrical construc-
tion. Itis not a matter of building a continuum by distributing points
in space, but of defining the real numbers and showing that these
can be ordered so as to be order isomorphic to the points on a line.
This means that a one-one correspondence can be established
between the real numbers in the interval (0, 1) and any finite line,
and between the positive (or positive and negative) real numbers
and any infinite line.

It is with the pathological functions that the continuum is actually
infinitely divided in a way which is not geometrically picturable. A
function which has infinitely many discontinuities between any two
limits effects a divorce between the introduction of discontinuities
(divisions) and the idea of a successive process. It thus does not
support a conception of potentially infinite division, but of actually
infinite division. It is the geometrical origin of the notion of a
function that suggests that to any well-defined function there
corresponds a ‘graph’ as something which exists as a determinate
object of mathematical investigation. It is also the geometric inter-
pretation which is heuristically important in very many of the
applications of analysis. But it is the algebraic expression of a
function that makes it natural to think of this determinate objectas a
geometrically determinate, actually infinite set of points.

So the purely arithmetical development of the theory of real
numbers (defined as equivalence classes of convergent infinite
sequences of rationals) and of functions defined over them does not
automatically support a theory of real numbers which can validate
the conception of an actually existing infinite point continuum. This
is because the infinite sequences of rationals can be treated as either
actually or potentially infinite. But when the definition of real
numbers as the limits of convergent sequences of rational numbers
is given in the context of the intended geometrical interpretation it
appears (a) that the actual infinite must be accepted if the real



